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Gravity currents with residual trapping
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Motivated by geological carbon dioxide (CO2) storage, we present a vertical-
equilibrium sharp-interface model for the migration of immiscible gravity currents
with constant residual trapping in a two-dimensional confined aquifer. The residual
acts as a loss term that reduces the current volume continuously. In the limit of a
horizontal aquifer, the interface shape is self-similar at early and at late times. The
spreading of the current and the decay of its volume are governed by power-laws.
At early times the exponent of the scaling law is independent of the residual, but at
late times it decreases with increasing loss. Owing to the self-similar nature of the
current the volume does not become zero, and the current continues to spread. In
the hyperbolic limit, the leading edge of the current is given by a rarefaction and
the trailing edge by a shock. In the presence of residual trapping, the current volume
is reduced to zero in finite time. Expressions for the up-dip migration distance and
the final migration time are obtained. Comparison with numerical results shows that
the hyperbolic limit is a good approximation for currents with large mobility ratios
even far from the hyperbolic limit. In gently sloping aquifers, the current evolution is
divided into an initial near-parabolic stage, with power-law decrease of volume, and
a later near-hyperbolic stage, characterized by a rapid decay of the plume volume.
Our results suggest that the efficient residual trapping in dipping aquifers may allow
CO2 storage in aquifers lacking structural closure, if CO2 is injected far enough from
the outcrop of the aquifer.

1. Introduction
1.1. Carbon dioxide storage in saline aquifers

This study is motivated by carbon capture and storage (CCS), also known as carbon
dioxide (CO2) sequestration, in geological formations (for a summary see Metz
et al. 2006). CCS involves capturing the CO2 arising from industrial processes and
transporting it to a suitable storage site, where most of it is expected to be sequestered
from the atmosphere permanently. Geological storage of CO2 has been proposed in
saline aquifers, deep-sea sediments, depleted oil and gas reservoirs, and in combination
with enhanced oil recovery or enhanced coal bed methane recovery.

To make a significant contribution to the mitigation of climate change, gigatonnes
of CO2 must be stored in the subsurface every year. CO2 storage on this scale is
currently viable only in saline aquifers. The term saline aquifer is used for deep
sedimentary rocks saturated with formation waters or brines, which contain high
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Figure 1. Migration of the mobile CO2 current (dark grey) due to buoyancy and the formation
of a zone containing residual saturation in its wake. The dimensional times correspond to the
physical parameters discussed in § 6.2. (a–d ) Horizontal aquifer; (e–h) aquifer with 5◦ slope.

concentrations of dissolved salts. Owing to their high salinity, these brines are not
used as drinking water or for irrigation.

Saline aquifers occur in all sedimentary basins and are not restricted to coal, oil,
or gas provinces. CO2 is injected in the supercritical state to decrease the storage
volume (Holloway & Savage 1993). For a typical geothermal gradient of 25 ◦Ckm−1,
the depth required for CO2 to be in the supercritical state is approximately 800 m.
Supercritical CO2 is less dense than the brine under all continental and shallow
marine storage conditions.

An impermeable seal, i.e. a shale or clay layer, overlying the storage formation
is therefore always necessary to prevent direct upward migration of the buoyant
supercritical CO2. In addition, a concave downward structure, a structural trap or
closure, is thought to be necessary to prevent upward migration of the CO2 along
an inclined seal towards the surface. Much of the saline aquifer storage volume is
in gently dipping regional aquifers that do not have a structural closure. Along-dip
migration and eventual leakage is therefore a major concern for CO2 storage in such
aquifers. However, trapping mechanisms continually reduce the volume of the CO2

plume. Trapping therefore limits both the time scale over which leakage is possible
and the maximum up-dip migration distance (Ennis-King & Paterson 2002; Hesse,
Tchelepi & Orr 2006).

The two primary trapping mechanisms are the dissolution of CO2 into the brine
(Lindeberg & Wessel-Berg 1997; Ennis-King, Preston & Paterson 2005) and the
formation of residual saturation in the wake of the CO2 plume (Kumar et al. 2005;
Mo et al. 2005); the latter is illustrated in figure 1. Dissolved CO2 is trapped, because
it is negatively buoyant and will migrate downward. The large regional aquifers
considered here are generally deep and have relatively low permeability. The onset
time for convective dissolution of CO2 in low-permeability aquifers is large, and the
convective fluxes after onset will be small (Riaz et al. 2006; Hassanzadeh, Pooladi-
Darvish & Keith 2007). We therefore expect dissolution to be slow, and we assume
that the formation of residual CO2 is the main trapping mechanism in deep aquifers.
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Figure 2. (a) Microtomogram of non-wetting CO2 bubbles (black) and water (white) in
the pore space between grains (grey), from Benson et al. (2006). (b) Comparison between
non-wetting phase saturation profile after imbibition (– – –), inferred from a wire-line log
(Koperna & Kuuskraa 2006), and the simplified step function saturation profile corresponding
to the sharp-interface approximation (——). (c) The geometry of the porous layer and the
variables used in the derivation are shown.

1.2. Immiscible displacements and residual saturations

In many sedimentary rocks, supercritical CO2 is typically the non-wetting phase
relative to the ambient brine. At the front of the CO2 plume, the CO2 saturation
increases, and the brine is drained from the pore space. The capillary entry pressure
prevents the drainage of the brine from the smallest pores, resulting in an incomplete
displacement. We refer to the brine left behind the advancing CO2 front as the residual
brine Sbr . Bachu & Bennion (2007) showed that Sbr can range from 0.2 to 0.68 at
storage conditions in saline aquifers. The high end of these values is surprising and
may in part be due to heterogeneity and gravity segregation in the experiments. They
also show that the presence of residual water reduces the apparent permeability of
the CO2 to approximately 1/5 of the single-phase permeability. We refer to this value
as the relative permeability of CO2, denoted krc.

If the CO2 plume is migrating laterally as a gravity current, the CO2 saturation
decreases at the trailing edge of the plume (figure 1), and the ambient brine imbibes
into the pore space previously occupied by CO2. Preferential imbibition of the brine
into the smaller pores and interfacial instabilities leave CO2 behind as disconnected
bubbles and ganglia of CO2 (figure 2a), which are effectively immobile. We refer to
this immobile CO2 saturation as the residual CO2 saturation, Scr , and to the process
as residual trapping. Bachu & Bennion (2007) report values of Scr from 0.1 to 0.35
for saline aquifers in the Alberta basin, indicating that they will trap CO2 efficiently.

Most work on residual trapping during CO2 storage has focused on the effect of
hysteresis on the magnitude of Scr , and the design of injection strategies that maximize
residual trapping during, or shortly after, the injection period (Mo et al. 2005; Juanes
et al. 2006; Ide, Jessen & Orr 2007). We focus on the effect of the vertical sweep
efficiency, S, which may be defined as the fraction of the aquifer that is contacted
by the CO2 plume during its buoyancy-driven migration in the post-injection period.
A volume balance argument shows that the up-dip migration distance, x↑, up to a
constant is given by

x↑ ≈ Vc

φHSScr

, (1.1)

where Vc is the volume of CO2 injected, H the thickness of the aquifer, and φ
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the porosity. Ennis-King & Paterson (2002) used this relationship to highlight the
sensitivity of the migration distance to the magnitude of Scr . Equation (1.1) shows
that the effect of S on the migration distance of the CO2 plume is comparable to
that of Scr . The sweep is expected to be less than unity, because gravity segregation
and viscous instabilities lead to the formation of a gravity tongue along the top of
the aquifer.

1.3. Previous work on gravity currents and CO2 storage

While the residual saturation is an upscaled parameter determined by viscous and
capillary forces on the pore scale, the vertical sweep is a macroscopic quantity that
can be studied using fluid mechanical models of gravity currents in porous media.
Nordbotten, Celia & Bachu (2005), Lyle et al. (2005), Vella & Huppert (2006),
Verdon & Woods (2007) and Bickle et al. (2007) used sharp-interface models to
study the development of the CO2 plume during the injection period in confined and
unconfined aquifers. During injection, the CO2 saturations increase and no residual
CO2 forms. After several decades, the injection of CO2 ends, and the CO2 plume
migrates as a gravity current for several hundreds or thousands of years. Thus, Hesse
et al. (2006, 2007b) argued that the long-term evolution of the CO2 plume can be
modelled as an instantaneous release of finite volume. In the post-injection period,
the CO2 saturation decreases in the wake of the gravity current and residual trapping
reduces the current volume (figure 1). Kochina, Mikhailov & Filinov (1983) extended
the sharp-interface model to allow for a constant residual saturation, and studied the
decay of the plume volume after a finite release in a horizontal aquifer. Hesse et al.
(2006) used a similar model to study the effect of slope on the migration distance in
unconfined aquifers. We extend their work to confined sloping aquifers and consider
the limiting cases.

2. Governing equations
2.1. Derivation

We consider the flow of supercritical CO2 with density ρc = ρ and viscosity μc and of
brine with density ρb = ρ +�ρ and viscosity μb in a sloping porous layer of constant
thickness H , with dip angle θ � 0, and infinite lateral extent (figure 2c). Both fluids are
considered incompressible, and we assume that the porous medium is homogeneous
and isotropic with permeability k and porosity φ, and that the top and bottom
boundaries are impermeable. We consider an aquifer and a gravity current with a
large aspect ratio (length : height � 1) so that the velocities in the z-direction are
negligible over most of the current, and the pressure in each phase is hydrostatic. We
also assume that the displacement is slow enough that gravity–capillary equilibrium
is maintained in any vertical cross-section of the current (figure 2b). This assumption
of vertical-equilibrium has been used extensively in petroleum engineering and in
hydrology (for examples see Yortsos 1995; Bear & Ryzhik 1998).

If the thickness of the released fluid is large compared to the capillary transition
zone, the saturation in each fluid is approximately constant (figure 2b). As a first
approximation we replace the transition zone by a sharp interface and assume that
the saturations above and below the interface are constant. We refer to the resulting
models as a vertical-equilibrium sharp-interface model, to emphasize the two main
assumptions underlying the model. We denote the thickness of the CO2 plume by
hc = h so that the depth of the brine is given by hb = H − h. In this case the pressure
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in the aquifer is given by

p =

{
pI − gρ(z − hb) + Pc for z > hb,

pI − g(ρ + �ρ)(z − hb) for z � hb,
(2.1)

where pI is the unknown pressure at the interface, Pc is the constant capillary pressure,
and g is the acceleration due to gravity. The volume flux per unit width qp of phase
p ∈ {c, b} is given by the multiphase extension of Darcy’s law qp = −kλp∂φp/∂x,
where φp = p−gρp(x sin θ +z cos θ) is the potential of phase p, and λp = krp/μp is the
mobility of phase p, assumed to be constant. The flow rate per unit width of phase p

is given by Qp = hpqp . In the absence of a source term, and with the assumption of
incompressibility, the global conservation of volume is given by Qc + Qb = 0. Using
this constraint we can eliminate ∂pI/∂x from the expressions for the flow rates, and
we obtain

Qc = −Qb = kg�ρ
hλc(H − h)λb

hλc + (H − h)λb

(
sin θ − cos θ

∂h

∂x

)
. (2.2)

To obtain an equation for the evolution of the interface, we consider the conser-
vation of the CO2 volume Vc over region �x and time �t as shown in figure 2(c).

�Vc = φ(1 − Sbr )�h�x = (Qc|x − Qc|x+�x)�t + Rc. (2.3)

The source term Rc accounts for the volume of CO2 that is lost as residual saturation
Scr in the wake of the plume. Following Kochina et al. (1983) we assume a constant
residual saturation, Scr, so that

Rc =

{
−�h�xScr for ∂h/∂t < 0,

0 for ∂h/∂t � 0.
(2.4)

Taking limits for small �x and �t the equation for the evolution of the interface is
given by

∂h

∂t
= κ

∂

∂x

[
h(H − h)

h(M − 1) + H

(
− sin θ +

∂h

∂x
cos θ

)]
, (2.5)

where we have introduced two parameters: the conductivity κ of the CO2 is given by

κ =

⎧⎪⎪⎨
⎪⎪⎩

κ1 =
kλc�ρg

φ(1 − Sbr − Scr)
for ∂h/∂t < 0,

κ0 =
kλc�ρg

φ(1 − Sbr )
for ∂h/∂t > 0,

(2.6)

where κ1 � κ0, and the mobility ratio is given by M = λc/λb. The mobility ratio
M measures the change in the mobilities across the advancing part of the interface,
because we neglect the effect of the residual CO2 on the mobility of the brine. For
geological CO2 storage the ambient brine is less mobile and M > 1, and we restrict the
discussion to this range. Hesse et al. (2007b) showed that this choice of parameters
allows a simple reduction of (2.5) in the limits max(h) � H or M � 1. For Scr = 0,
the coefficient (2.6) becomes continuous and (2.5) reduces to the form given by Bear
(1972).

The thickness of the zone saturated with residual saturation is given by hr [x, t1] =
hmax[x, t1] − h[x, t1], where the vertical sweep hmax is the largest thickness the CO2
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plume has achieved at a particular location up to the time of consideration

hmax[x, t1] = max
t�t1

(h[x, t]), ∀x.

We also refer to hr as the residual surface that identifies the fraction of the aquifer
swept by the CO2 plume.

We study the evolution of a finite release of CO2 into an aquifer saturated with
brine. Owing to the diffusive nature of the governing equations, the details of the
particular shape of the initial condition have a small effect on the intermediate and
long-term evolution. We consider initial conditions with compact support

h [x, t = 0] =

{
h0[x], |x| � L/2,

0, |x| > L/2.
(2.7)

In all cases discussed in this paper we simply choose h0 = H , so that the initial aspect
ratio of the current is given by A0 = L/H . The initial saturations in the CO2 and in
the brine are Sc = 1 − Sbr and Sb = 1. This corresponds to a porous medium that is
invaded by the released fluid for the first time, which is appropriate for CO2 storage
in saline aquifers.

2.2. Dimensionless form

We choose the following dimensionless variables

η = h/H, ξ = x/L, σ = κ/κ1 � 1, t/t∗,

where L is the width of the initial condition. We may choose either a diffusive or an
advective characteristic time scale, t∗, given by

ta = L(κ1 sin θ)−1 or td = L2(κ1H cos θ)−1, (2.8a, b)

so that τ = t/ta and ϑ = t/td . Substituting these definitions into (2.5) we obtain two
dimensionless equations

σ −1ητ + fξ = Pe−1(f ηξ )ξ or σ −1ηϑ + Pefξ = (f ηξ )ξ , (2.9a, b)

depending on the choice of the characteristic time scale. The flux function is defined
as

f =
η(1 − η)

η(M − 1) + 1
, (2.10)

and the dimensionless discontinuous coefficient is given by

σ =

{
1, ητ < 0 or ηϑ < 0,

1 − ε, ητ > 0 or ηϑ > 0,
(2.11)

depending on the choice of the characteristic time. Equations (2.9a) and (2.9b) have
the same dimensionless governing parameters

M =
krcμb

μckrb

, Pe = A0 tan θ, ε =
Scr

1 − Sbr

,

the mobility ratio, M � 0, the Péclet number, Pe � 0, and the residual, 0 � ε < 1. The
advective and diffusive time scales are related by τ = Peϑ . The dimensionless initial
condition (2.7) is given by

η(ξ, 0) =

{
1, |ξ | < 1

2
,

0, |ξ | > 1
2
.

(2.12)
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3. Parabolic limit: horizontal aquifers
Hesse et al. (2007b) discussed the evolution of a finite release in a confined horizontal

aquifer, Pe= 0, without residual saturations, ε = 0. They showed that the evolution of
a rectangular initial condition, given by (2.12), can be understood in terms of an early
self-similar solution, corresponding to a tilting interface in a confined aquifer with
the similarity variable ξ/ϑ1/2, followed by a transition to a late self-similar solution,
corresponding to a finite release in an unconfined aquifer with the similarity variable
ξ/ϑ1/3. For M > 1, the late similarity solution, which neglects the ambient fluid, is a
good approximation only when the current is very thin relative to the thickness of
the aquifer.

In the presence of residual trapping an analogous transition from an early to a
late scaling law is observed. However, we show below that the exponents of the
early scaling laws are independent of the residual, whereas Bear & Ryzhik (1998)
showed that the exponents of the late scaling laws are a function of the residual. In
the terminology of Barenblatt (1996), the evolution of the current transitions from a
similarity solution of the first kind to a similarity solution of the second kind.

3.1. Early similarity solutions with loss

Initially, the two interfaces of the current evolve independently and symmetrically
(figure 1a). Until they interact, they evolve as tilting interfaces described by a self-
similar solution given by a step function initial condition

η =

{
a, ξ < ξ̃,

b, ξ > ξ̃,
(3.1)

where ξ̃ is the initial position of the interface. Here we consider only the cases a = 1
and b = 0, but self-similar solutions are not limited to this choice. The outward and
inward propagating tips of the interface are denoted by ξo and ξi respectively. For
ξ̃ < ξ � ξo the interface is advancing, and the thickness of the current is increasing,
ηϑ > 0, so that σ = 1 − ε. For ξi � ξ < ξ̃ the interface is receding, and the thickness
of the current is decreasing, ηϑ < 0, so that σ = 1. The location ξ̃ of the discontinuity
in the coefficient is constant at early times.

Equation (2.9b) and the initial condition (3.1) are self-similar in the variable
ζ = ξ/ϑ1/2. Therefore, the propagation of the plume tip at early time is given by the
scaling law ξo = a[ε, M]ϑ1/2, where a is a constant that decreases with increasing
ε. Inserting Pe =0 and the similarity variable into (2.5b), we obtain the ordinary
differential equation

−ζ

2

dη

dζ
= σ̃

d

dζ

(
η(1 − η)

η(M − 1) + 1

dη

dζ

)
, (3.2)

where σ [ηζ ζϑ ] = σ̃ [ηζ ]. The mobility ratio, M , and the residual, ε, determine the shape
of the similarity solution at early times. The inner and outer boundaries of integration
ζi and ζo are unknown, and generally are functions of M and ε. These eigenvalues
must be determined as part of the solution, requiring two additional constraints.
The boundary conditions on the inward and outward propagating tips are given
by

η [ζi] = 1,
dη

dζ

∣∣∣∣
ζi

=
ζiM

2
, (3.3a, b)
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Figure 3. (a) Interface shapes for M = 1 and ε increasing from 0 to 1 in 0.2 increments.
(b) Interface shapes for M = 10 and ε increasing from 0 to 1 in 0.2 increments. (c) Contours
of the outward propagating tip position, ζo. (d ) Contours of the inward propagating tip
position, ζi .

η [ζo] = 0,
dη

dζ

∣∣∣∣
ζo

=
−ζo

2(1 − ε)
, (3.3c, d )

respectively. The conditions on η specify the vertical extent of the interface. The
conditions on ηζ have no direct physical interpretation, but they are required to satisfy
(3.2) at the boundaries ζi and ζ0, and they provide the two additional constraints
necessary to determine the eigenvalues. Together (3.2) and (3.3 a–d ) form a nonlinear
eigenvalue problem for the shape of the interface and the two unknown tip positions,
ζi and ζo. This eigenvalue problem has been solved numerically as a function of the
governing parameters M and ε using a shooting method.

Figures 3(a–b) show that increasing M leads to the formation of a gravity tongue,
while increasing ε tends to shorten the gravity tongue and may lead to an inflection
in the interface. For M � 1, the outward propagating tip position, ζo, is mostly a
function of ε, while the inward propagating tip position, ζi , is more strongly affected
by M (figure 3c, d ). In the limit where all fluid is trapped, ε = 1, the interface does
not propagate, ξo = ξ̃ , but the interface does recede, ξi �= ξ̃ . However, the distinction
between the fluids across the receding interface is lost, and the interface loses it
physical significance. The evolution of this imaginary interface is still given by (3.2),
but it does not correspond to any fluid movement.

The early similarity solution shows that residual trapping has only a weak influence
on the evolution of the receding part of the interface. Instead residual trapping slows
down the advancing interface, because less fluid is supplied from the receding part.
A similar behaviour is observed in the hyperbolic model discussed in § 4.



Gravity currents with residual trapping 43

0.500.25 0.75 1.00

1/8

1/4

1/3

1/2

early
late

10–2 100 102 104
10–1

100

101

ˆ

102(b)(a)

ξoβ

�ε

ε = 0
ε = 0.25
ε = 0.50
ε = 0.75

Figure 4. Change of the solution from the early to the late scaling law (M = 1). (a) The
scaling laws for ξo ∝ ϑβ at early and late times as a function of the residual, ε. The symbols
at ε of 0, 1/4, 1/2 and 3/4 show the exponents obtained by fitting the numerical data shown
in (b). For the early scaling law the data was fit for ϑ between 0.1 and 10 and for the late

scaling law the data was fit for ϑ > 1000. (b) The shifted tip position, ξ̂o = ξo − ξ̃ , is shown as
a function of ϑ , for increasing residuals, where ξ̃ = 1.

3.2. Regime transition and late solution

Hesse et al. (2007b) showed that f → η at late times when the current is much thinner
than the thickness of the aquifer, so that (2.9b) reduces to

ηϑ = σ (ηηξ )ξ , (3.4)

for all M . The only parameter in this equation is the residual, ε, in the discontinuous
coefficient, σ . Semi-analytic solutions for the interface shape have been obtained
in the radial (Kochina et al. 1983; Barenblatt 1996), and the one-dimensional case
(Bear & Ryzhik 1998).

For a compact initial condition, the solution of this parabolic equation with a
moving discontinuous coefficient is a similarity solution of the second kind (Barenblatt
1996). These solutions are characterized by an anomalous exponent in the scaling
laws that govern the solution. In this case we obtain

ξo = c1 [ε, M, η0] ϑβ(ε), (3.5a)

ηmax = c2 [ε, M, η0] ϑ2β(ε)−1, (3.5b)

V = c3 [ε, M, η0] ϑ3β(ε)−1, (3.5c)

for the tip of the plume, the height of the plume, and the volume of the plume.
Figure 4(a) shows the decrease of the anomalous exponent β with increasing ε.
For (3.4), the exponent must be determined numerically from a nonlinear eigenvalue
problem (see Bear & Ryzhik 1998). As expected, increasing residual trapping leads
to a faster decrease of the plume volume and slower tip propagation. Another
characteristic of this type of solution is that the constants of proportionality (c1–c3)
in these scaling laws depend on the initial condition.

Figure 4(b) shows the transition from an exponent of 1/2, to the late anomalous
exponent β � 1/3. Initially, only the constant in the scaling law is affected by ε, but
at late times, both the coefficient and the exponent depend on ε. The sharp-interface
model presented here predicts that the volume of the current always decays as a
power law in horizontal aquifers. In this case, the current is never exhausted and
continues to spread. Capillary forces, which are neglected in this model, will arrest
the movement of the current once it becomes thin.
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4. Hyperbolic limit: sloping aquifers
For confined sloping aquifers the current evolution is not self-similar, and no

general solutions to (2.5) are known. For large Pe numbers, (2.9a) reduces to a
simpler equation that allows an analysis of the current evolution. For Pe → ∞, we
obtain the following quasi-linear hyperbolic equation

ητ + σληξ = 0, (4.1)

where the derivative of the flux function is denoted by λ≡ fη.

4.1. Riemann problems

First we consider two Riemann problems to understand the effect of trapping, i.e. the
discontinuous coefficient σ , on rarefactions and shocks. Then we consider rectangular
initial condition (2.12), representing a finite release of fluid, and the resulting wave
interaction. For non-zero values of loss, the wave interaction will lead to an extinction
of the current in finite time.

4.1.1. Rarefaction

Consider the piecewise constant initial data

η[ξ, τ = 0] =

{
1, ξ � ξ̃ ,

0, ξ > ξ̃ .
(4.2)

The weak solution, a spreading wave or rarefaction, is obtained by the method of
characteristics. This rarefaction is a tilting interface analogous to the self-similar
solutions presented in § 3.1. Following the notation introduced there, we refer to the
tip propagating to the left as ξi and to the tip propagating to the right as ξo. The
characteristics of the solution originating at the discontinuity are given by

ξ = σ [ητ ] λ[η]τ + ξ̃ , (4.3)

and therefore all solutions are self-similar in the coordinate ξ/τ . The discontinuity in
σ leads to a discontinuity of the slope of the interface at ξ̃ , but the interface itself
remains continuous, because λ = 0 at ξ̃ . For M �= 1 and ε < 1 the equation for the
evolution of η[ξ, τ ], given by inverting (4.3) is

η[ξ, τ ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ξ � ξi,

−τ + M̂(ξ0 − ξ ) +

√
Mτ (τ + M̂(ξ − ξ0))

M̂(τ + M̂(ξ − ξ0))
, ξi < ξ < ξ̃,

1

(1 +
√

M)
, ξ = ξ̃ ,

−τ ε̂ + M̂(ξ0 − ξ ) +

√
Mτε̂(τ ε̂ + M̂(ξ − ξ0))

M̂(τ ε̂ + M̂(ξ − ξ0))
, ξ̃ < ξ � ξo,

0, ξo < ξ,

(4.4a)
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Figure 5. (a) The flux function f is shown for M = 10 and increasing trapping ε. (b) The
corresponding solution profiles given by (4.4) in self-similar coordinates.

where M̂ = M − 1, ε̂ = 1 − ε. For M = 1 and ε < 1, the solution becomes piecewise
linear and is given by

η [ξ, τ ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ξ � ξi,

1
2

(
ξ0 − ξ

2τ
+ 1

)
, ξi < ξ < ξ̃,

1
2
, ξ = ξ̃ ,

1
2

(
ξ0 − ξ

2τ (1 − ε)
+ 1

)
, ξ̃ < ξ � ξo,

0, ξo < ξ,

(4.4b)

where the positions of the outward and inward propagating tips of the rarefaction
are given by

ξo = (1 − ε)τ + ξ̃ , ξi = − τ

M
+ ξ̃ . (4.5)

For tilting interfaces in the parabolic limit, we have shown that ξi is a stronger
function of M than ε. In the hyperbolic limit the entire receding interface has lost its
dependence on ε. Where the interface is advancing, f is scaled by σ = 1−ε (figure 5a),
and the residual reduces the propagation speed of the advancing interface (figure 5b).
This behaviour is analogous to the self-similar solutions in the parabolic limit. The
solution for ε = 1 is still given by (4.4), but the advancing interface is replaced by a
discontinuity at ξ̃ with a jump from 0 to ηmax. A comparison of figures 3(b) and 5(b)
shows that M and ε have a similar effect on the shape of the interface in both the
parabolic and hyperbolic limits.

For M = 0, (4.1) reduces to the linear advection equation

ητ + σηξ = 0, (4.6)

with a moving discontinuity in the velocity, σ . In this limit an ambiguity arises in σ (ητ ),
because ητ is singular at the discontinuity. The solution to (4.6) can be obtained taking
the limit of (4.4) as M → 0 and requiring that the solution changes continuously with
changes in the parameter M . In this limit, the rarefaction degenerates to a contact
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discontinuity

η [ξ, τ ; M = 0] =

{
1, ξ � Λcτ + ξ̃ ,

0, Λcτ + ξ̃ < ξ,
(4.7)

where Λc = 1 − ε is the speed of the discontinuity.

4.1.2. Shock

Consider the piecewise constant initial data

η[ξ, τ = 0] =

{
ηL, ξ � ξ̃ ,

ηR, ξ > ξ̃,
(4.8)

where ηL <ηR . The weak solution of (4.1) with (4.8) is a shock of strength, ηs = ηR−ηL,
given by

η [ξ, τ ; M] =

{
ηR, ξ � Λτ + ξ̃ ,

ηL, Λτ + ξ̃ < ξ,
(4.9)

where Λ is the shock speed. Similarly to (4.6) an ambiguity arises, because ητ

is singular at the shock. Therefore we define the shock speed considering (4.1)
regularized by a diffusion term

ητ + σ [ητ ] fηηξ = νηξξ , (4.10)

where ν > 0. For initial data (4.8) the entropy-satisfying solution to (4.1) is defined by
the solution of (4.10) in the limit of small ν, the so-called vanishing viscosity solution.
We assume the solution of (4.10) with (4.8) takes the form of a travelling wave with
constant speed Λν , so that η [ξ, τ ] = η̂ [ζ ], where the travelling-wave coordinate is
ζ = ξ − Λντ . For a steady travelling wave, the time derivative that determines the
value of σ is given by

ητ = ζτ η̂ζ = −Λνη̂ζ . (4.11)

For initial data (4.8) we expect the solution to be monotonically increasing, η̂ζ > 0, so
that the sign of ητ is determined by the direction of wave propagation, given by the
sign of Λν . The constant wave speed implies that ητ does not change sign, and hence
σ is continuous, but its magnitude depends on the sign of the wave speed, σ = σ̂ [Λν].

In the moving coordinate system, (4.10) reduces to the ordinary differential equation
with the boundary conditions η̂ → ηR for ζ → +∞, and η̂ → ηL for ζ → −∞. After
integrating once and eliminating the constant of integration with either boundary
condition, the following expression is obtained

η̂ζ =
σM(η̂ − ηL)(ηR − η̂)

ν(M̂η̂ + 1)(M̂ηL + 1)(M̂ηR + 1)
. (4.12)

This confirms our assumption that η̂ζ > 0 for ηL < η̂ < ηR . Equation (4.12) does not
depend on the wave speed, because consistency with both boundary conditions
requires that the wave speed be given by

Λν = σ
1 − M̂ηRηL − ηL − ηR

(M̂ηL + 1)(M̂ηR + 1)
, (4.13)

which has already been substituted into (4.12). For M = 1 the solution to (4.12) is

η̂ =
1

2

(
ηL + ηR + (ηR − ηL) tanh

(
(ζ − Cν)σ (ηR − ηL)

2ν

))
, (4.14)
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Figure 6. Shock construction for M = 10. (a) In the absence of trapping, ε = 0, the constru-
ction for advancing (adv.) and receding (rec.) shocks is the same. (b) In the presence of
trapping, ε = 1/2, the shock construction for advancing shocks is modified. (c) Shock speed as
a function of ηL, for ηL > ηc the shock speed depends on the amount of trapping.

where C is a constant of integration that can be determined by the initial position of
the discontinuity, ξ̃ , and σ is given by (2.11). Equations (4.11) and (4.12) allow us to
write an equivalent definition of σ in terms of the sign of the wave speed

σ [ητ ] = σ̂ [Λν] =

{
1, Λν > 0,

1 − ε, Λν < 0.
(4.15)

This definition is not ambiguous at discontinuities in the limit ν → 0. With this
definition of σ , the Rankine–Hugoniot jump condition for the shock is

Λ = σ̂
f [ηL] − f [ηR]

ηL − ηR

= Λν, (4.16)

so that the shock speed of the limiting solution is identical to the wave speed of the
viscous solution.

The geometric interpretation of the jump condition (4.16), is a chord joining f [ηL]
and f [ηR], as shown in figure 6(a, b). For a given ηR and M the direction of wave
propagation as a function of ηL is given by

Λν

⎧⎪⎨
⎪⎩

< 0, ηc < ηL < ηR,

= 0, ηL = ηc,

> 0, 0 < ηL < ηc,

(4.17)

where

ηc =
1 − ηR

(M − 1)ηR + 1
, (4.18)

which corresponds to a horizontal tangent and a stationary shock.
The speed of shocks moving to the right is not affected by trapping, while the

speed of waves travelling to the left is reduced owing to trapping (figure 6c). This
behaviour of the shock is analogous to the behaviour of the rarefaction. In both
cases, the speed of the interface is reduced, by a factor 1 − ε due to trapping, when it
is advancing, but it is not affected if the interface is receding. However, the parameter
that identifies whether the interface recedes or not is different for the rarefaction and
the shock. For an interface with a finite slope, i.e. a rarefaction, the change of the
height of the interface with time, ητ , determines which parts of the interface recede.
For a vertical interface, i.e. a shock, the sign of shock speed, Λ, determines whether
the interface recedes across the shock or not.
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Figure 7. Characteristic portraits of the evolution of initial data (2.12), in the (ξ, τ )-plane.
The current is bounded by the shock, A to D, in the back and the leading characteristic of the
rarefaction, F to D, in the front. (a) Analytic solution for M = 1 and ε = 0.4. (b) Semi-analytic
solution for M = 5 and ε = 0.4. (c) Evolution of the current interface (black) and the residual
surface (grey).

4.2. Wave interaction

The evolution of a finite release of fluid is governed by the interaction of the shock
at the back of the current with the rarefaction at the front of the current. In the
presence of trapping, this interaction leads to a rapid reduction of current volume,
and gives rise to a finite migration distance and time.

Consider the piecewise constant initial data given by (2.12). Initially, the solution of
the front is a rarefaction given by (4.4) with ξ̃ = 1/2, for all M > 0, and the evolution
of the back is a stationary shock (A to B in figure 7) with constant shock strength
(figure 8b), because Λ = 0 for ηL = 0 and ηR = 1 for all M > 0. When the back end
of the rarefaction reaches the shock, the shock strength decreases and it begins to
move. The solution, η, will then be given by (4.4), but η [ξ < ξs] = 0, where the ξs is
the shock position.

4.2.1. Shock evolution

The waves begin to interact at the transition time, τt = M (B in figure 7), and the
shock speed begins to increase as the shock strength decreases. Considering the shock
strength, ηs , as a parameter along the shock path (B to D), so that τ = τ [ηs], and
ξ = ξ [ηs], we differentiate (4.3) and (4.16) to obtain two differential equations

ξηs
= ληs

[ηs] τ + λ [ηs] τηs
, ηsξηs

= f [ηs] τηs
. (4.19)
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Eliminating ξηs
, we obtain the differential equation

dηs

dτ
=

f [ηs] − ηsλ [ηs]

ηsλη [ηs] τ
, (4.20)

for the evolution of the shock strength. Together with the initial condition ηs [τt ] = 1,
it determines the evolution of the shock strength (figure 8b). Once ηs is known, the
shock position is given by ξs = λ [ηs] τ + 1/2. We solve for ηs instead of ξs , because
(4.20) is always separable.

If trapping occurs, ε �= 0, the evolution of ηs is divided into an early period,
τt � τ � τp , during which the shock interacts with the receding portion of the
rarefaction (B to C in figure 7), and a later period τp < τ � τf , where the shock
interacts with the advancing portion of the rarefaction (C to D). Hence, the problem
has three time scales: the transition time, τt , when interaction between waves begins
(B ), the passing time, τp , when the shock passes the stationary point of the rarefaction
and starts to interact with the advancing section of the rarefaction (C ), and the final
migration time, τf , when the volume of the current goes to zero (D).

In the early period, the shock strength and position are independent of ε and are
given by

ηs =
1

1 − M +
√

Mτ
, ξs = − 1

2
+ (

√
M −

√
τ )2. (4.21a, b)
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We have shown in § 4.1 that the receding section of the interface is not affected by
trapping. Therefore, the shock strength and position are independent of the amount
of trapping. The early period extends until the shock migrates past the initial extent
of the current, ξs < 1/2. The passing time and the shock strength at the passing time
are given by

τp = (1 +
√

M)2, ηs[τp] =
1

1 +
√

M
. (4.22a, b)

In the absence of trapping, (4.21a, b) remain valid for all τ > τt (dashed line in
figure 8). After τp , an explicit expression for ηs and ξs is obtained only for M = 1. We
give the full details for the case M = 1 to illustrate the structure of the solution, and
for M > 1 we integrate (4.20) numerically, using (4.22) as an initial condition. For
τp � τ � τf , the shock strength for M = 1 is given by

ηs =

⎧⎨
⎩

ε − 21+1/(ε−1)t−1−1/(2(ε−1))

2ε − 1
, ε �= 1

2
,

log
(
2/

√
t
)

+ 1
2
, ε = 1

2
.

(4.23)

For ε = 1/2, the right-hand side of (4.20) loses the explicit dependence on ηs , leading
to a simplified expression. The expression for the shock path is given by

ξs =

⎧⎨
⎩

(ε − 1)

2ε − 1
(t − 22+1/(ε−1)t1/(2(1−ε))) + 1

2
, ε �= 1

2
,

1
2
(log(t/4)t + 1), ε = 1

2
.

(4.24)

In the second phase, the shock speed and position depend strongly on the amount
of trapping. Figure 8(a) illustrates the effect of increasing trapping on the current
evolution in the (ξ, τ )-plane for M = 1, and similar behaviour is observed numerically
for other M (figure 7b). From (4.24), (4.23) and (4.4), the aspect ratio of the current
is given by

A =
ξo − ξs

ηs

=

⎧⎪⎨
⎪⎩

1 + (1 − ε)τ, τ < 1,

2τ − ετ 3/2, 1 < τ � 4,

2(1 − ε)τ, 4 < τ < τf ,

(4.25)

for M = 1. Even in the presence of trapping, A is always increasing for M � 1.
The final residual surface, ηr , is the interface that divides the part of the aquifer

that has been invaded by the current, and now contains trapped fluid, from the region
of the aquifer that has not been invaded. The final residual surface for ξ < 1/2 is
the initial condition. For ξ > 1/2, the final residual surface is defined as ηr = ηs [ξs]
and can be calculated by eliminating τ between (4.23) and (4.24) to obtain ξ = ξ [ηr ].
However, it is not possible to invert this relationship to obtain an explicit expression
for ηr

ξ =

⎧⎨
⎩

1
2

+
(ε − 1)

2ε − 1
(ϕ(ηr ) − 22+1/(ε−1)ϕ(ηr )

1/(2−2ε)), ε �= 1
2
.

e1−2ηr (2 − 4ηr ) + 1
2
, ε = 1

2
.

(4.26)

where ϕ[ηr ] = (2−ε/(ε−1)(−2εηr + ηr + ε))1/(2ε−1)−1. The shape of the final residual
surface is shown in figure 8(c) for increasing residual saturations.

4.2.2. Final migration time and distance

The finite migration distance is an important characteristic of the hyperbolic limit, in
contrast to the self-similar solutions for the horizontal case. The maximum migration
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Figure 9. Contour plots of (a) the up-dip migration distance, log(ξ↑), and (b) of the total
migration time, log(τf ). The data for several potential storage aquifers in Alberta, Canada, are
shown as circles to indicate typical parameter values (Bachu & Bennion 2007).

distance and the corresponding total migration time are amongst the most important
time and length scales for CO2 storage, and the analytic and semi-analytic results
(figure 9) presented here show how these scales depend on the governing parameters.

The total migration distance, ξ↑, is given by

ξ↑ =

{
1
2

− 21+1/(2ε−1)(ε − 1)ε1/(2ε−1)−1, ε �= 1
2
,

1
2

+ 2e, ε = 1
2
.

(4.27)

Increasing mobility increases ξ↑, because a gravity tongue forms at the top of the
aquifer and only a small fraction of the aquifer is swept and contributes to residual
trapping.

The final migration time for M = 1 is given by

τf =

{
(2−1−1/(ε−1)ε)−2(ε−1)/(2(ε−1)+1), ε �= 1

2
,

4e, ε = 1
2
.

(4.28)

The dimensionless final migration time increases strongly with increasing M . The
dimensionless time is based only on the properties of the released fluid. As M

increases, the ambient fluid becomes increasingly less mobile, which retards the
movement of the released fluid.

4.2.3. Volume evolution

The final migration time, τf , bounds the time available for leakage from the storage
reservoir. For smaller times, the volume of mobile CO2 is a basic quantity necessary
to estimate potential leakage over time. Analytic expressions for the evolution of
the current volume are given by integrating (4.4) over the extent of the plume. The
normalized current volume V = V (τ )/V (τ0) is given by

V =

∫ ξo

ξs

η dξ = 1 − τε(1 +
√

M)−2 (4.29a)

for τ < τp . In this early period, the evolution of both the shock and the receding
part of the rarefaction is independent of ε. Therefore the swept area containing
residual saturation is also independent of ε, and the current volume decreases in
proportion to ε. The decay of the current volume slows down with increasing M ,
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Figure 10. The effect of the governing parameters on the evolution of the current volume.
The passing and final migration times, are shown as circles and triangles. (a) Increasing the
residual, ε, from 0.1 to 0.9 at constant M = 1. (b) Increasing the mobility ratio, M , from 1 to
40 at constant ε = 0.4.

because the receding interface slows down. This behaviour is also observed in semi-
analytic solutions for τ > τp . At later times the lower limit of the integral is known
only for M = 1, and in this case the current volume is given by

V =

⎧⎪⎪⎨
⎪⎪⎩

1 − ε

t (1 − 2ε)2
(
2−ε/(1−ε)t1/(2(1−ε)) − εt

)2
, ε �= 1

2
,

t

8

(
log

( t

4

)
− 1

)2

, ε = 1
2
,

(4.29b)

for τ < τf = 4e. Figure 10(a) shows how strongly the current volume is affected by
the magnitude of ε. This evolution is distinctly different from the power-law decay
obtained from the self-similar solutions for horizontal aquifers. It suggests that sloping
aquifers reduce the current volume particularly effectively. An evolution similar to
(4.29) is observed for a wide range of M (figure 10b).

The residual volume is given by Vr = 1 − V, and from (4.29) we see that the
volume of trapped CO2 increases linearly initially, but more slowly for τ > τp . The
efficiency of residual trapping decreases with time, because the size of the receding
interface, ηs , decreases rapidly, once the shock interacts with the advancing section of
the rarefaction.

5. Numerical results
In this section, we present numerical solutions to (2.9) and show that the current

evolution for intermediate values of Pe can be understood in terms of an early
essentially parabolic period followed by a late near hyperbolic regime. We also
discuss important length and time scales of the solution as a function of increasing
Pe. The numerical solutions were computed using standard finite-volume techniques
and explicit time integration (Leveque 2002).

5.1. Near hyperbolic behaviour for large M

In CO2 storage, the Pe number is not necessarily large, but the mobility ratio is
generally larger than unity, M ≈ 5. Here we show that the particular shape of f

leads to near hyperbolic behaviour of (2.9a) for small Pe and large M . Consider the
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at constant M = 10.

differentiated form of (2.9a) given by

σ −1ητ + ληξ = Pe−1(λ(ηξ )
2 + f ηξξ ). (5.1)

In the absence of source terms, the thickness η of the current decreases monotonically
with time, and for M � 1, the current takes the shape of a triangle composed of a
very elongate, flat, advancing tongue in the front and a short, steep, receding tongue
in the back (figure 1g–h). This asymmetry increases with Pe, M and τ . The hyperbolic
approximation introduced in § 4 replaces the short, steep, receding interface of the
current by a shock.

In the advancing tongue ηξξ � ηξ � 1, and hence both the diffusive, f ηξξ , and
the second-order term, λη2

ξ are small. The diffusive term is reduced further over the

entire current, because max(f ) = 1/(1 +
√

M)2 decreases with increasing M . The
second-order term η2

ξ is not small in the steep receding back of the current, and
figure 11 shows that the error in the hyperbolic approximation is localized there.

Figure 11(a) illustrates how the error introduced by the hyperbolic approximation
decreases with increasing M . For M > 5 and τ > 2τp , the only significant error in the
hyperbolic approximation is due to a small off-set in the shock position. In the limit
M = 0, a similarity solution to the full equation is available (Huppert & Woods 1995),
and it is shown to provide an indication of the accuracy of the numerical method
used. Once loss is introduced, ε > 0, the small differences in the sweep of the full
solution and the hyperbolic solution lead to differences in plume volume at any given
time. This volume error accumulates over time and leads to differences between the
shock location in the hyperbolic model and the back of the plume in the numerical
solution (figure 11b).

5.2. Transition from parabolic to hyperbolic behaviour

In gently sloping media, the current transitions from initial parabolic behaviour
to hyperbolic behaviour at late times (figure 12). Owing to the distinctly different
behaviour of these limiting cases for ε > 0, the transition is apparent in the evolution
of the current volume. An initial power-law decay of the current volume is followed
by a much more rapid decay characteristic of the hyperbolic limit.
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Figure 12. Evolution of the current volume, V, as a function of diffusive dimensionless
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corresponding to the parameter choice discussed in § 6, assuming cos θ ≈ 1.

In the limit of large Pe, the plume volume is given by (4.29) and its semi-analytic
extension to M �= 1. This limiting solution is plotted in figure 12 as a function of
the diffusive dimensionless time ϑ = τ/Pe, so that changes in Pe correspond to a
stretching of the time axis. We observe that the limiting solution describes the rapid
decay of the current volume at late times, even for Pe < 1.

5.3. Length and time scales for gravity currents with residual

The length and time scales that are important for gravity currents in sloping layers
are the propagation distance against gravity, ξ↓, and the time of the associated
reversal in the direction of the interface movement, τt . For a buoyant current the
down-dip propagation of the interface is due to the across-slope component of
gravity described by the parabolic part of the equation. The reversal of the interface
movement indicates the transition from early near-parabolic to late near-hyperbolic
behaviour. The continued volume loss and the resulting extinction of the current
give rise to additional length and time scales, the up-dip migration distance, ξ↑, and
the final migration time, τf . Numerical results for all four scales as a function of
increasing Pe are shown in figure 13. To determine the scales associated with the
end of the current, the numerical simulation was terminated at V = 10−3. This value
was chosen to allow a reasonable detection of the gravity current tips, which become
strongly affected by numerical diffusion for smaller cutoff volumes. The rapid decay
of the plume volume at late times (figure 12) suggests that the results are not very
sensitive to the cutoff, and the reasonable agreement between numerical and limiting
analytic results in figure 9 confirms this. The down-dip migration distance, ξ↓, is not

very sensitive to M or ε. For small Pe, it follows the relation τt = 1/
√

6Pe obtained for
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Figure 13. Time and length scales obtained from the numerical solution of (2.9) are shown
as symbols (�ξ = 0.01). All results are for a residual of ε = 0.4. The limiting hyperbolic
and self-similar solutions are indicated by full and dashed lines, respectively. (a) Down-dip
migration distance, ξ↓. (b) Transition time, τt . (c) Up-dip migration time, ξ↑. (d ) Final migration
time, τf .

the similarity solution for M = ε = 0. As τt increases with decreasing Pe, the current
thickness decreases as well, and the similarity solution for the unconfined aquifer
becomes a better approximation. As Pe increases, ξ↓ approaches the position of the
initial condition, which is also the down-dip migration distance in the hyperbolic
limit. The transition time, τt , appears to approach the limiting hyperbolic solution
much slower than the other parameters.

The up-dip migration distance, ξ↑, and the final migration time, τf , show a more
complicated behaviour as Pe increases. As Pe goes to zero both become very large,
which is consistent with the late similarity solution for the limiting case Pe =0. As Pe
increases, the hyperbolic limit is approached quickly, except for M = 0. However, for
Pe ≈ 0.2 − 0.5, a minimum in both quantities is observed for M > 1. Hesse et al. (2006)
showed that both ξ↑ and τf decrease with increasing Pe for M = 0. Figure 9(c, d ) shows
a similar behaviour of ξ↑ and τf for M < 1, but we observe an increase of ξ↑ and τf

for M > 1 for Pe> 1.

6. Discussion
6.1. Assumptions

The most limiting assumptions in the derivation of the governing equations are the
homogeneity of the porous medium, the uniform saturation in the CO2 plume, and
the incompressibility of the CO2. Although simple forms of heterogeneity in
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the across-slope direction can be included (Huppert & Woods 1995), general
forms of heterogeneity require a full numerical solution. Ide et al. (2007) investi-
gated gravitational spreading of a CO2 plume in a horizontal two-dimensional
heterogeneous aquifer with a reservoir simulator. They showed that the effect of
capillary forces on residual trapping is larger than the effect of moderate permeability
heterogeneity. In the absence of capillary forces, their numerical simulations resemble
figure 1(a–d ). Simulations including capillary forces lead to a thicker current with
a non-uniform vertical saturation profile and an increase in capillary trapping (Mo
et al. 2005). It may therefore be interesting to extend the model presented here to
non-uniform saturation distributions. The infinitely spreading solution obtained for
horizontal aquifers is a direct result of neglecting capillary forces. The current will
stop propagating once the hydrostatic potential at the tip of the plume decreases
below the entry pressure necessary for the CO2 to invade the largest pores. Below
we show that even in very gently dipping aquifers, the CO2 may rise vertically by
several hundred metres, if the up-dip migration distance is long. In these cases, the
expansion of the CO2 will lead to an increase in plume volume that will be significant,
in particular if the CO2 becomes gaseous.

In the hyperbolic model for sloping aquifers, we neglect the second-order term,
λ(ηξ )

2. This simplification leads to the unphysical vertical interface at the trailing
end of the current. Despite this simplification, we find that the resulting quasi-linear
hyperbolic model describes many characteristics of the current evolution very well.
The minimum in the migration distance and time observed in figure 13 is not explained
by the limiting cases. The most likely explanation is the down-dip migration of the
current against gravity. This down-dip migration is represented by the second-order
term, λ(ηξ )

2. Inclusion of this term leads to a fully nonlinear hyperbolic model

σ −1ητ + ληξ = Pe−1λ(ηξ )
2. (6.1)

This model could still be solved by the method of characteristics allowing fast and
accurate solutions to be obtained by numerical integration.

In terms of geological CO2 storage, we have neglected the dissolution of CO2 into
the brine. Two types of dissolution must be distinguished, direct dissolution of CO2

into the residual brine and the enhanced dissolution of CO2 at the interface between
CO2 and brine owing to convective currents in the underlying brine (Ennis-King et al.
2005; Riaz et al. 2006). The direct dissolution into the residual brine can be modelled
in this framework, but the effect is likely to be small compared to the residual trapping.
The enhanced dissolution due to convective transport may become important at later
times, because the gravity tongue provides a large interface. This process could be
modelled conceptually through an effective loss term, but only preliminary data are
available to estimate the magnitude of this loss term (Hesse, Riaz & Tchelepi 2007a).
An extension of the model presented here would allow a comparison of the relative
contribution of dissolution and residual trapping.

The leading edge of the CO2 plume is both gravitationally and viscously unstable
and this leads to the formation of a gravity tongue in our solutions. Riaz &
Tchelepi (2006) have shown that this gravity tongue is also the dominant feature
in high-resolution numerical simulations of two-dimensional vertical displacements.
The displacement may also be viscously unstable in the transverse direction, similar
to the Saffman–Taylor instability in a Hele-Shaw cell (Saffman & Taylor 1958),
or the instability of viscous currents on inclined planes discussed by Lister (1992).
The linear instability of an immiscible displacement in a porous medium has been
studied by Yortsos & Hickernell (1989) and Riaz & Meiburg (2004). However, these
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studies consider advection-dominated one-dimensional base flows and not the two-
dimensional base flow in gravity–capillary equilibrium that is of interest here. The
study of the stability of the two-dimensional flows presented here is an interesting
direction for future work, but is beyond the scope of this paper.

6.2. Implications for CO2 storage in saline aquifers

Nicot (2007) considered the storage of roughly a fifth of the CO2 emissions from
coal power stations in the state of Texas over the next 50 years. This would require
the injection of approximately 370 × 106 m3 per year of supercritical CO2, equivalent
to 50 MtCO2 per year, into the central section of the Carrizo–Wilcox aquifer. He
envisaged a line of 50 wells aligned perpendicularly to the dip of the aquifer with
a 1.6 km spacing. These wells act as a 80 km line source, and our one-dimensional
solution is a reasonable approximation of the displacement away from the edges.

To obtain first-order estimates of the migration distance of the injected CO2, we
assume the following constant aquifer properties estimated from the data given in
Nicot (2007): H ≈ 200 m, k ≈ 500 mD, φ ≈ 0.15, the average depth of injection 2.7 km,
the average distance to the outcrop 100 km, and therefore an average dip angle,
θ ≈ 1.5◦. We assume the following fluid properties: �ρ ≈ 300 kgm−3, Scr =Sbr =0.2,
μb/μc ≈ 10, krc ≈ 0.2, krb =1 (at the advancing interface).

Given these data, the appropriate length scale at the end of 50 years of injection
is L ≈ 10 km, so that the initial aspect ratio is A = L/H ≈ 50. The three governing
parameters are therefore M ≈ 5, ε ≈ 0.25 and Pe =A tan θ ≈ 1.4. Figure 13 shows that
the migration distance and time for M = 5 are already close to the hyperbolic limit
for Pe =1.4, so that we obtain ξ↑ ≈ 80 and τf ≈ 110 from figure 9.

The along-slope migration distance would be approximately ξ↑L = 800 km, so that
the migration distance exceeds the up-dip extent of the aquifer significantly. Under
the simplifying assumptions made here, this particular injection scenario does not
ensure that all CO2 would be trapped by residual saturation alone. The initial length
scale L would have to be reduced to 100 km/ξ↑ = 1.25 km to achieve residual trapping
of all injected CO2. This could be achieved by increasing the width of the injection
zone from 80 to approximately 620 km. Another option would be to reduce the
volume injected into this aquifer from 50 to roughly 6.5 MtCO2 per year, assuming
the original injection width of 80 km. In this case, the CO2 would remain mobile for
1550 years after the end of injection.

The Carrizo–Wilcox formation has a relatively high permeability for deep saline
aquifers and is relatively thick. Therefore, the time estimated for trapping all injected
CO2 is shorter and the storage volume is larger than expected for other deep aquifers.
In many cases, the properties of deep saline aquifers are closer to: k ≈ 30 mD, φ ≈ 0.1,
H ≈ 20 m, and the dip angle may be as small as 1/2◦ (Michael et al. 2006). In this case,
the storage volume is less than 10 % of that discussed above for the same width of
injection. To assist comparison, we assume all other properties are the same, so that
Pe ≈ 1/2. The volume evolution for these cases and various larger angles is shown in
figure 12, and the evolution of the interface shape for θ = 0◦ and 5◦ is also shown in
figure 1. We see that the migration time of the current is reduced from approximately
40 000 years for a slope of 1/2◦ to approximately 2000 years for a slope of 15◦. The
up-dip migration distance decreases from 85.6 km at 1/2◦ to a minimum of 82.8 km
at 1◦ and slowly increases again to 84.5 km at 15◦.

As the slope of the aquifer increases, the distance the plume can migrate before it
reaches the surface decreases. Assuming an injection depth of 2000 m, only angles less
than 2◦ prevent leakage in the example considered above, and even for θ = 1/2◦ the
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Figure 14. Contour plots of (a) the critical angle, θc , assuming d0 = 2 and (b) the sweep, S,
as functions of M and ε. The data for several potential storage aquifers in Alberta, Canada,
is shown as circles to indicate typical parameter values (Bachu & Bennion 2007).

CO2 rises 750 m vertically. Therefore, the depth of the current at the end of migration
is the important criterion for storage security. Given the dimensionless initial depth
d0 = D0/L, the dimensionless final depth is d = −d0 + ξ↑ sin θ . We can define the
critical angle at which the injected CO2 reaches the surface as

θc = arcsin

(
d0

ξ↑

)
. (6.2)

Figure 14(a) shows that the critical angle, θc, increases with ε and decreases with M .
For a given M and ε the CO2 will not reach the surface for θ < θc.

Despite rapid trapping compared to the horizontal case, CO2 storage in saline
aquifers is limited by the poor vertical sweep, S, and the resulting long migration
distances. The vertical sweep can be defined as S = 〈hr〉 /H = 〈ηr〉, where 〈hr〉 is
the average residual surface. The initial volume of mobile CO2 is given by φ(1 − Sbr)
HL, and the residual volume of CO2 at the end of the migration is given by
φScr 〈hr〉 (x↑ − x↓). An expression for the vertical sweep, S, can be obtained from the
conservation of volume and is given by

S =
ε

ξ↑ − ξ↓
, (6.3)

where ξ↓ ≈ 0 in the hyperbolic limit. Figure 14(b) shows that the sweep is a strong
function of ε, increasing monotonically from zero at ε = 0 to unity for ε = 1. For
the data from Bachu & Bennion (2007), the sweep can vary from less than 10−3 to
more than 10−1, roughly three orders of magnitude, while the residual, ε, itself only
varies between 0.1 and 0.7. Therefore the residual CO2 saturation, Scr, influences the
up-dip migration distance given by (1.1) more strongly through its influence on the
sweep than through its direct volumetric effect.

7. Conclusion
We have derived a vertical-equilibrium sharp-interface model governing the

migration of a gravity current with residual saturations in a two-dimensional confined
aquifer. This model allows an analysis of the effect of the imperfect vertical sweep on
the migration distance and time of the current.
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The parabolic limit of the governing equations, corresponding to a horizontal
aquifer, allows self-similar solutions at early and late times. The spreading of the
current and the decay of the volume are given by power laws. At late times, the
exponent of the power law depends on the residual, ε. Despite continued volume loss,
the current volume is never reduced to zero, and the current continues to spread.

In the hyperbolic limit of the governing equations, the current is described by a
travelling wave with hysteresis. The leading edge of the interface is a rarefaction,
and the trailing edge is a shock. The current volume is reduced continuously by
the residual, and the volume is reduced to zero in finite time. We have obtained
expressions for the up-dip migration distance and the final migration time of the
current.

In both the parabolic self-similar solutions and the hyperbolic rarefaction and
shock, we observe that the residual trapping affects the advancing section of the
interface more strongly than the receding section of the interface. Although trapping
occurs at the receding interface, the advancing interface is affected, because less fluid
is supplied.

In gently sloping aquifers, an initial near-parabolic regime with power-law decay
of the volume is followed by a near-hyperbolic regime with very rapid volume decay.
Increasing the slope of the aquifer or the initial aspect ratio of the current reduces
the duration of initial parabolic period.

Our results suggest that lateral migration of the injected CO2 along the seal will trap
the CO2 relatively quickly as residual saturation. Residual trapping is quite effective
in sloping aquifers with small mobility ratios and high residual CO2 saturations.
However, the long migration distances of CO2, owing to the formation of a gravity
tongue, may limit the volume of CO2 that can be stored in sloping regional aquifers.

This research was supported by the Global Climate and Energy Project (GCEP)
and the SUPRI-B reservoir simulation affiliates program at Stanford University.
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